LESSON 3.2b

Multiplying Complex Numbers

Yesterday you:

- Learned about *imaginary numbers*, and *complex numbers*
- Added and subtracted complex numbers
- Practiced using English to describe math processes and equations

Today you will:

- Multiply complex numbers
- Practice using English to describe math processes and equations

Multiplying complex number is easy!

To multiply complex numbers, simply use the Distributive Property or FOIL the two together:

•
$$n(a+bi) = n \cdot a + n \cdot bi$$

•
$$(a+bi)(c+di) = ac + a \cdot di + bi \cdot c + bi \cdot di$$

Multiply. Write the answer in standard form.

a.
$$4i(-6+i)$$
 b. $(9-2i)(-4+7i)$

= -22 + 71i

STUDY TIP

SOLUTION

When simplifying an expression that involves complex numbers, be sure to simplify i^2 as -1.

a. 4i(-6+i) = -24i + 4(-1) = -4 - 24ib. (9-2i)(-4+7i) = -36 + 71i - 14(-1) = -36 + 71i + 14Use $i^2 = -1$. Write in standard form. Simplify and use $i^2 = -1$. Simplify.

Write in standard form.

Multiply and write the answer in standard form:

$$15i(-1+2i) \qquad (4-12i)(11+8i)$$

$$= 15i \cdot (-1) + 15i \cdot 2i \qquad = 44 + 32i - 132i - 96i^{2}$$

$$= -15i + 30i^{2} \qquad = 44 - 100i - 96(-1)$$

$$= -15i - 30 \qquad = 140 - 100i$$

$$= -30 - 15i$$

Electrical circuit components, such as resistors, inductors, and capacitors, all oppose the flow of current. This opposition is called *resistance* for resistors and *reactance* for inductors and capacitors. Each of these quantities is measured in ohms. The symbol used for ohms is Ω , the uppercase Greek letter omega.

Component and symbol	Resistor	Inductor	Capacitor	5Ω
Resistance or reactance (in ohms)	R	L	С	
Impedance (in ohms)	R	Li	-Ci	Alternating current source

The impedance of a circuit is the sum of its individual resistance and reactance values. The table shows the relationship between a component's resistance or reactance and its contribution to impedance. A *series circuit* is also shown with the resistance or reactance of each component labeled. The impedance for a series circuit is the sum of the impedances for the individual components. Find the impedance of the circuit.

SOLUTION

The resistor has a resistance of 5 ohms, so its impedance is 5 ohms. The inductor has a reactance of 3 ohms, so its impedance is 3i ohms. The capacitor has a reactance of 4 ohms, so its impedance is -4i ohms.

Impedance of circuit = 5 + 3i + (-4i) = 5 - i

The impedance of the circuit is (5 - i) ohms.

Homework

Pg 108, #33-48